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A current limitation for imaging of brain function is the potential
confound of anatomical differences or registration error, which may
manifest via apparent functional “activation” for between-subject
analyses. With respect to functional activations, underlying tissue
mismatches can be regarded as a nuisance variable. We propose
adding the probability of gray matter at a given voxel as a covariate
(nuisance variable) in the analysis of voxelwise multisubject functional
data using standard statistical techniques. A method is presented to
assess the extent to which a functional activation can reliably be
explained by underlying anatomical differences, and simultaneously, to
assess the component of the functional activation which cannot be
attributed to anatomical difference and thus is likely due to functional
difference alone. Extension of the method to other intermodal imaging
applications is discussed. Two exemplary data sets, one PET and one
fMRI, are used to demonstrate the implementation and utility of this
method, which apportions the relative contributions of anatomy and
function for an apparent functional activation. The examples show two
distinct types of results. First, a so-called functional activation may
actually be caused by a systematic anatomical difference which, when
modeled, diminishes the functional effect. In the second result type,
including the anatomical differences in the model can account for a
large component of otherwise unmodeled variance, yielding an increase
in the functional effect cluster size and/or magnitude. In either case,
ignoring the readily available structural information can lead to
misinterpretation of functional results.
© 2006 Elsevier Inc. All rights reserved.
Introduction

The goal of an increasing number of functional imaging studies
is to examine how in vivo metabolism or physiology is related to a
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parameter of interest such as group difference (e.g. normal vs.
diseased) or a subject-specific measure (e.g. age). Early efforts
typically employed a Region-of-Interest (ROI) drawn directly on
the functional image for each subject. Use of a coregistered high-
resolution anatomic image (e.g. MRI) for each subject increased
the accuracy but still required time-consuming drawing of
individual ROIs. By registering images from every subject to a
single reference frame, a single ROI for each structure of interest
could be used, vastly speeding up the process. A far reaching
consequence of a common reference frame was the development of
an automated voxelwise approach to data analysis (e.g. Friston,
1995), where each voxel is treated as an atomic ROI. The
voxelwise approach has become the de facto standard for
functional brain analysis and forms the basis for most popular
neuroimaging software tools.

Functional data analysis steps

Typical data processing for a multi-subject functional study
employs the following steps:

1. Process individual subjects' functional data to yield images
which can be compared across subjects. For PET this typically
involves voxelwise normalization to whole-brain tracer con-
centration, or for quantitative results, calculating voxelwise rate
constants. For fMRI an initial fixed-effects General Linear
Model (GLM) analysis is performed for each scan to yield one
or more functional contrast maps for each subject, with
associated variance maps.

2. Coregister each subject's functional data to their anatomical
image, usually a high-resolution MRI image. For fMRI data, a
coplanar T1 image may be preferable for registration.

3. Coregister each subject's MRI image to a single target image
(template) in the desired spatial coordinate system. Most
workers employ the Talairach coordinate system (Talairach
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and Tournoux, 1988) or a similar one such as the MNI system
(Evans et al., 1993).

4. Cumulate the transforms and register the functional data into the
anatomical template space.

The precise data processing steps are unimportant for the
implementation of voxelwise covariates, but are presented as a
basis for the following discussion.

Coregistration accuracy is an important limiting factor for the
validity of multi-subject functional image analysis. Inaccurate
registration can lead to either false activations if there is a
systematic difference in registration of a particular structure across
a parameter of interest (e.g. between groups), or can yield a loss of
sensitivity if a functional region from several individuals is
scattered about its true location in the reference space. The impetus
for this paper was to explore the former problem of false
activations which are attributable more to anatomical than true
functional differences, but it became evident that the latter problem
of decreased sensitivity was at least equally as important. In this
discussion, measurements obtained from PET and fMRI display
similar characteristics with regard to false activations: both
modalities depend on a change in concentration of a tracer
molecule for their effect (e.g. radiolabeled glucose for PET,
oxygenated hemoglobin for fMRI-BOLD). This discussion
assumes a typical registration algorithm which preserves the
concentration measurements, as opposed to preserving the total
amount of tracer.

Functional activation sources

Statistically significant effects observed in a multi-subject study
can arise from underlying differences in anatomical structure or
from misregistration, as well as from actual metabolic and
physiological differences. In this paper, the term “activation”
refers to a cluster of voxels which emerge as significantly
distinctive, whether the result is true or not. The term “metabolic
difference” refers to an actual underlying physiological effect,
whether or not this effect is noticed by the analysis software.

Functional activations can result from systematic differences in
the following circumstances:

1. Difference in a specific metabolic process which influences
measured signal. Such a metabolic difference is the only true
activation in this discussion.

2. Difference in tissue composition within a supposedly homo-
genous structure.

3. Misregistration of a structure to the target template.
4. Partial volume effect (PVE), a special case of spatial blurring.

Item (1) above could be considered a generalization of item (2),
but whereas the former is due to an altered metabolic rate constant,
the latter addresses the possibility of a different or altered
metabolic process due to different tissue type. Examples include
a tumor, or white-matter myelenation defects. This distinction is
made because, while there is a bona fide functional difference, it is
not due to an altered physiological rate constant in comparable
tissue. Misregistration (item 3) typically occurs when nearby
structures have stronger features which exhibit a greater influence
on the registration algorithm. The resulting comparison is invalid
to the extent that the underlying tissue is not comparable. A
structure that is small in relation to the spatial resolution can lead to
item (4), PVE (Hoffman et al., 1979; Muller-Gartner et al., 1992),
yielding an inaccurate measurement within the structure bound-
aries. False activations can result when differences in size or shape
of an anatomical structure lead to differences in measured signal.

Voxel-Based Morphometry (VBM)

Voxel-Based Morphometry (VBM) (Ashburner and Friston,
2000; Good et al., 2001) can be used to explore regional anatomical
differences much as similar functional approaches examine
physiological differences. Typically, data are compared across scans
by converting each anatomic image to a Gray-Matter Probability
(GMP) map which is coregistered into a common template space. A
GLM is then used to determine voxels with statistically significant
differences in gray matter composition. VBM is commonly used to
search for possible differences in anatomic structure between
groups. Differences found in VBM are due to a subset of the
reasons for an apparent functional activation, namely:

1. Differences in the tissue component of a structure (e.g. more
WM in the thalamus);

2. Misregistration, i.e. underlying differences in structure shape not
removed by the coregistration process.

The overlap of causes for functional and VBM activation can
lead to ambiguity in data interpretation.

VBM depends crucially on the coregistration process. If the
coregistration is gravely inaccurate, few structures will align
properly, leading to a large error term and consequent low
probability of finding differences. Conversely, if the registration is
perfect, then (by definition) all of the structures will align perfectly,
leaving no discernible differences. Thus, VBM depends on a
registration algorithm which is good, but not too good; using an
affine (~12 parameter) or slightly better registration seems to be a
popular choice. Since VBM is easy to use, it is widely used, but
there is ongoing discussion as to its validity in specific applications
(Bookstein, 2001; Ashburner and Friston, 2001; Davatzikos, 2004;
Duran et al., 2006; Kennedy et al., 2006).

Anatomical confounds to functional activations

Systematic differences in size or location of a structure do not
necessarily lead to spurious functional activations; if the registra-
tion algorithm performs correctly, the functional signal will
accurately reside in the corresponding template location. However,
although there can be several interpretations for statistically
significant VBM findings, a VBM signal can invalidate over-
lapping functional activations. Stated differently, any apparent
difference in signal not attributable to a metabolic process is not a
true functional activation. Such a difference can still be interesting,
but the source of the activation must be properly interpreted. In the
analysis scheme outlined above (Functional data analysis steps),
inaccuracies in registering the MRI data to the template propagate
directly to the functional data, so it is appropriate to use VBM to
highlight poor local registration which might influence the results
of functional image analysis.

Recent work (Momenan et al., 2004) points out that VBM can
be used to highlight suspect regions, and introduces a confidence
interval to help evaluate whether significant activations are more
likely due to functional or structural differences. This approach
stops short of incorporating the VBM results as a correction into
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the functional analysis. Mehta et al. (2006) proposed a voxelwise
correlation using T1-weighted MRI images; this approach attempts
to integrate information from all tissue types, but without
segmentation or some other type of scaling it suffers from a lack
of comparability of signal values across subjects. Casanova et al.
(2006) presented a voxelwise covariate method similar to the
approach described in this work, combining functional and
anatomic results via the software “Biological Parametric Mapping
Toolbox”, which interfaces with the commonly used SPM5
analysis software (http://www.fil.ion.ucl.ac.uk/spm).

Differences in underlying tissue should be regarded as a source
of error in analyzing functional data, and as such can be formally
incorporated into a GLM analysis. By treating the tissue type as a
continuous variable, the effect of varying tissue type can be
modeled explicitly and, if desired, its contribution to functional
activations can be removed. There are several possibilities for the
interaction of tissue type with functional activations:

1. In anatomically homogenous areas (i.e. similar GMP across
subjects), tissue type will have no effect, and functional
activations will be unaffected by modeling of the tissue type.

2. If the region is homogenous with respect to the anatomic data
but misaligned (e.g. the medial portion of a subject's amygdala
appears in the lateral portion of the template amygdala), the
underlying structural/functional mismatch may not be accounted
for. However, nearby regions showing a significant VBM
activation can indicate that closer inspection in this region is
warranted.

3. If the region is anatomically inhomogeneous across subjects and
this variation is orthogonal to other parameters of interest (e.g.
group membership), the variance term for the VBM results will
be large. Including such data in the model as a covariate will
tend to decrease the overall error, yielding higher functional
t-values in such regions.

4. If the region is anatomically inhomogeneous across subjects and
the variation is correlated to modeled parameters, an apparent
functional activation is likely due to underlying tissue
differences. In such cases, the variance apportioned to the
parameter of interest as well as the associated statistical values
will be appropriately reduced by inclusion of VBM covariates.

In the approach presented by Momenan et al., significant VBM
clusters are used to flag regions with functional activations which
should be examined more closely. The confidence interval these
authors introduce provides some guidance about the validity of a
functional activation. However, this approach only applies to entire
clusters, and does not address the extent to which a functional
activation colocated with a VBM activation is due to functional or
anatomical differences, especially if the VBM signal fails to reach
statistical significance. In other words, must a functional activation
always be rejected if there is an overlapping VBM activation, or
can the anatomical differences be taken into account to see if the
functional effect is still strong enough to stand on its own?

By incorporating the VBM results directly into the GLM, the
contribution of anatomical effects to a functional activation can be
accounted for. This not only provides a convenient and objective
approach to removing spurious functional activations, but also
enables remaining functional effects to be properly evaluated.
Furthermore, by including a known source of potential variance in
the model, the overall error term may decrease, leading to a
possible increase in functional t-statistic values.
Overview of the method

Statistical model

The standard model for an across-subjects regression analysis
is:

Yj ¼ z Vjγþ gj ð1Þ
where Yj is the observed functional value for the jth subject; z'j is
the vector of regressor variables for the jth subject; γ is a vector of
parameters (1 coefficient for each regressor variable) that varies
from voxel to voxel. ηj is a normally distributed error term with a
mean of zero and a variance of Sj

2 and varies across voxels.
In traditional multi-subject voxelwise analyses, an identical

random effects model is applied to each voxel independently. A
correction for multiple comparisons is then performed to obtain a
global threshold for statistical significance. For independent data
points (voxels), the multiple comparison correction is simply a
Bonferroni correction, but becomes more complex if the data are
correlated. This discussion initially presents a framework for
independent voxels, and later considers how a voxelwise covariate
affects the estimation of voxel correlation.

To incorporate anatomical variance into the GLM, an additional
regressor is concatenated to the matrix of regressor variables, i.e.
[z'j |x'j]. Notationally, square brackets “[]” are used to represent
matrices (vectors), and a vertical line “|” represents concatenation
of two matrices. The model is typically estimated using standard
maximum likelihood estimation (MLE) at each voxel. A model
adapted for random effects analysis (e.g. Pinheiro and Bates, 2000)
covarying for anatomy can be formulated as:

Y T
j ½z Vjjx Vj�γþ gTj ð2Þ

where Y*j is the observed functional value for the jth subject, given
both voxelwise and non-voxelwise covariates; x'j is the probability
that the voxel is gray matter for the jth subject; η*j is the
corresponding error term; other variables as defined in Eq. (1).

Extending this technique using hierarchical multiple regression
techniques (Cohen et al., 2003) permits investigation of the unique
contribution of functional differences beyond the voxelwise VBM
covariate. The variance explained in the functional data by the
GMP only (the reduced model) is compared to the variance
explained by gray matter probability and the regressor vectors of
interest (the full model). Using the above definitions for x'j and γ,

Y #
j ¼ ½x Vj�γþ gj ð3Þ

where Y#j is the observed functional value for the jth subject given
only voxelwise covariates (e.g. VBM results); η#j is the corres-
ponding error term.

The expected value resulting from each of these models (Eqs.
(1)–(3)) can be estimated by subtracting the error component,
which is generally different for each model:

Ej ¼ Yj � gj ð4Þ
The proportion of total variance explained by the model, R2, can be
described as:

RT2 ¼ 1� ðET2=Y 2Þ ð5Þ

R#2 ¼ 1� ðE#2=Y 2Þ ð6Þ

http://www.fil.ion.ucl.ac.uk/spm
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where Y is the observed voxelwise data; E* is the estimated data
given the both voxelwise and non-voxelwise covariates (full
model); E# is the estimated data given only voxelwise covariates
(reduced model).

The change in R2 is defined as the difference in the proportion
of variance explained between full and reduced models, and its
significance can be tested using an F-statistic. This change, ΔR2,
and its corresponding F statistic can be described as:

DR2 ¼ RT2 � R#2 ð7Þ

Fchange ¼ ðDR2=mÞ=ððRT2Þ=ðn� m� k � 1ÞÞ ð8Þ
where n is the number of subjects; m is the number of voxelwise
covariates; k is the number of non-voxelwise covariates.

This test goes beyond having a voxelwise covariate, and
directly investigates the unique contribution of the non-voxelwise
covariates (i.e. covariates of interest) in explaining the functional
data. It is worth noting that this approach is different from more
sophisticated hierarchical linear models (Bryk and Raudenbush,
1992; Goldstein, 1995; Neter et al., 1996), in which multiple
nested factors can be modeled. The current examples do not
employ nested factors, although the technique is in principle
extensible to hierarchical models with nested factors. The current
approach is also somewhat different from “backward” or “step-
down” procedures (Neter et al., 1996; Rao and Toutenburg, 1999),
in that such stepwise procedures often include or exclude predictor
variables on the basis of their unique contribution to explained
variance, and are frequently used to optimize model selection. In
the present neuroimaging examples, the inclusion of voxelwise
covariates was determined by theoretical considerations, so the
models (full and reduced) have distinct roles.
Effect of a voxelwise covariate on the statistical threshold estimate
Since a large number of voxels are considered, a correction for

multiple comparisons must be performed to obtain an acceptable
statistical threshold. An important issue is how a covariate which
varies from one voxel to the next might affect the estimate of a
statistical threshold. Individual voxels for most imaging modalities
are usually correlated to some extent with neighboring voxels, so
an estimation of this effect must be obtained. A straightforward
Bonferroni correction is usually too conservative, so Worsley et al.
(1996) and Kiebel et al. (1999) developed a framework for
estimating the effective number of independent resolution
elements, or “resels”, contributing to an image. Their work is
based on estimating the smoothness of the image from the
voxelwise residuals of the model fit by modeling the noise estimate
(residual) as a convolution of a Gaussian kernel with white noise.
In this way the noise is correlated and multiple comparisons
correction can proceed based on random field theory.

Using the method of Kiebel et al. (1999) as embodied in
popular analysis software such as SPM5, the voxelwise residuals
throughout the image contribute to the smoothness estimate, so a
voxelwise covariate will implicitly be properly incorporated into
the calculation of the statistical threshold for a large volume such
as the whole brain. Furthermore, some neuroimaging software (e.g.
“fmristat” Worsley et al., 2002) currently includes covariates for
each slice, which has little or no effect on the estimation of the
significance threshold. The underlying assumption of a constant
error variance across voxels (homoscedasticity) becomes more
valid as sources of variance are included in the model. If the
statistical threshold is calculated based on the distribution of the
data set using e.g. a permutation test (see Nichols and Holmes,
2001), the use of voxelwise covariates will not affect the accuracy
of the threshold estimate.

Implementation

The voxelwise covariate method was implemented by modify-
ing the program “multistat” contained in Worsley's “fmristat”
Matlab-based analysis package. The modified computer program is
available (with permission from Dr. Worsley) by contacting the
author of this paper. It is planned that the voxelwise covariate
approach will be included as a feature of the NiPy neuroimaging
software (http://neuroimaging.scipy.org/), an anticipated vehicle
for a Python version of fmristat.

All computation was performed using a standard linux-based
desktop computer. The GMP for each subject is read from a
previously created file (details further on) and a covariate vector
across subjects is created at each voxel. Since this occurs in the
innermost loop of the computer algorithm, an additional
computational burden is incurred. For example, the second-level
analyses required 104 (fMRI) or 29 (PET) s for the standard
analysis, but took 566 (fMRI) or 766 (PET) s when voxelwise
covariates were included. The additional computational burden
scales roughly with the number of voxels within each plane, but
other factors (e.g. a non-local disk used for PET data analysis)
are also important. Nevertheless, since the voxelwise covariates
are incorporated at the second level of analysis, the computational
burden relative to analyzing the fMRI time series is relatively
small.

In the current implementation, no explicit effort was made to
detect inestimable voxels beyond the error checking inherent in the
fmristat code, which checks if the standard deviation of the contrast
is infinite. The covariates are folded into the model prior to this
check.

Exemplar data sets

Two previously existing multisubject data sets were selected to
demonstrate the generality of this method: (i) FDG PET in rhesus
monkeys with two separate scans (activation and control
conditions); and (ii) a human fMRI event-related task. The
studies from which these data were drawn and associated
preprocessing steps have been described in detail elsewhere
(Fox et al., 2005; Kalin et al., 2005; Oakes et al., 2005; Johnstone
et al., 2006). For both data sets, a similar approach was used to
prepare the anatomical and functional data. A summary pertinent
to the current work follows.

Anatomical data
Whole brain anatomical MRI data were acquired for all of the

rhesus monkeys using a GE Signa 3.0 T scanner (General Electric
Medical Systems, Milwaukee, WI) with a standard quadrature
birdcage headcoil using an axial 3D T1-weighted inversion-
recovery fast gradient echo sequence (TR=9.4 ms, TE 2.1 ms,
FOV=14 cm, flip angle=10°, NEX=2, matrix=512×512, voxel
size=0.2734 mm, 248 slices, slice thickness=1 mm, slice gap=
−0.05 mm, prep time=600, bandwidth=15.63, frequency=256,
phase=224). Before undergoing MRI acquisition, the monkeys
were anesthetized with ketamine (15 mg/kg) intramuscularly and
monitored throughout the scan.

http://neuroimaging.scipy.org/
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Human anatomical images were acquired on a GE Signa 3.0 T
scanner with a quadrature head coil, and consisted of a high
resolution 3D T1-weighted inversion recovery fast gradient echo
image (T1 highres: inversion time=600 ms, 256×256 in-plane
resolution, 240 mm FOV, 124×1.1 mm axial slices), and a T1-
weighted spin echo coplanar image with the same slice position
and orientation as the functional images (T1 coplanar: 256×256 in-
plane resolution, 240 mm FOV, 30×4 mm sagittal slices with a
1 mm gap), and T2-weighted fast spin echo image (256×256 in-
plane resolution, 240 mm FOV, 81×2 mm sagittal slices). Human
data were acquired initially for 40 subjects, although 8 subjects
were rejected due to incomplete or suboptimal fMRI data, and a
further 7 were rejected due to poor tissue segmentation, yielding
25 subjects in this study. Subjects were drawn from the population
at large and are representative of “control” subjects, and were
balanced across gender (F=11, M=14) and age (18–50 years,
approximately 1/3 of each gender in each of the ranges 18–29, 30–
39, 40–50).

PET data
Rhesus monkeys were injected with 7mCi of [18F]-FDG and

placed singly in a testing room, with a human “intruder” in the
room looking near the monkey but avoiding eye contact. After
30 min, the monkeys were anesthetized, transported to the PET
scanner (Concorde microPET-P4), and PET images of the brain
were acquired from 50–80 min post-injection. For this example,
two groups of monkeys were compared: those who, in previous
testing, exhibited a low level of anxiety-associated “freezing”
behavior (n=12) vs. those who exhibited a high amount of
freezing behavior (n=11). The globally normalized, coregistered
data for these two groups of subjects were compared using a
one-tailed t-test. All rhesus data (PET and anatomical) were
registered to a template that approximates the atlas proposed by
Paxinos et al. (2000), which has the anterior and posterior
commisures in the same axial and sagittal plane. PET data were
smoothed using a 4.0 mm FWHM Gaussian filter. A mask was
created for the PET data using manually drawn whole-brain
regions (ROIs) for each subject based on T1-weighted MRI
images. Functional data voxels outside of this mask were set
to 0.

fMRI data
fMRI data were acquired from 25 normal human subjects on a

GE Signa 3.0 T MRI scanner with a quadrature head coil using a
gradient echo EPI sequence. Subjects responded to angry and
happy facial expressions, while concurrently listening to either
emotionally congruent or discrepant vocal expressions, a task
previously used to examine the crossmodal processing of fear
expressions (Dolan et al., 2001). Half of the participants were
instructed to decide the mood of the pictured face on the basis of
the facial expression (‘respond to face’ group), while the other half
were instructed to base their decision on the vocal expression
(‘respond to voice’ group). Spatial smoothing employed a 5.0 mm
FWHM Gaussian filter. A liberal brain mask was created from each
subject's T1 MRI image using BET (Smith, 2002) with voxels
outside of the brain set to 0. Results are presented from the
conditions in which the facial and vocal expressions were
congruent (happy face with happy voice, angry face with angry
voice) compared to those which were discrepant (happy/angry,
angry/happy). Individual subject data were modeled using a GLM
with FSL (http://www.fmrib.ox.ac.uk/fsl/). Gender (male vs.
female) was included as a predictor of interest in the second-level
(multisubject) GLM analysis.

Gray-Matter Probability (GMP) maps
T1-weighted MRI images were roughly registered to a MRI T1

weighted template using a rigid-body (6-parameter) transform to
obtain a uniform orientation. An initial binary mask of each
subject's brain was created from T1 weighted MRI images using
BET and then carefully refined manually for each subject. Whole
brain masks were checked by 3 researchers to ensure a high degree
of accuracy and intersubject consistency. Functional data were
registered to each individual's MRI T1-weighted high-resolution
anatomic image using a 6-parameter fit. The anatomic images were
then registered to an appropriate anatomic template (rhesus or
human) using AIR (Woods et al., 1998) with a 5th order nonlinear
transformation (for rhesus), or FLIRT (Jenkinson and Smith, 2001)
with a 12-parameter fit (for humans), and the transforms were
cumulated and applied to bring the functional images into the
template space. The MRI images were segmented into 3 (rhesus) or
4 (human) tissue classes: cerebral spinal fluid (CSF), gray matter
(GM), white matter (WM), and “other” using FAST (rhesus)
(Zhang et al., 2001) or MFAST (human). Visual inspection was
performed after each step, and 7 human subjects (of 32) were
rejected due to poor segmentation.

The Gray-Matter Probability (GMP) maps were masked (i.e.
voxels outside of the brain set to 0), then smoothed with a Gaussian
kernel (rhesus:4 mm, humans: 7 mm) to yield images with
approximately the same smoothness as the corresponding func-
tional data, in order to minimize partial volume effects. The
smoothness of the contrast image maps was estimated using the
AFNI program “3dFWHM” (http://afni.nimh.nih.gov/afni/) (Cox,
1996) to verify that the paired modality's data were similar in this
regard. Average smoothnesses (mm FWHM) were: rhesus
PET:4.80; rhesus GMP:6.27; human fMRI and GMP:9–10. Prior
to groupwise analysis, the GMP images were zero-meaned, i.e. the
mean GMP map calculated across subjects was subtracted from
each subject's GMP map. The resulting voxelwise GMP covariates
(x'j from Eq. (2)) are the primary focus of this work.

Results

PET results

The original between-group functional analysis yielded several
significant clusters; two clusters, in prefrontal cortex and putamen,
are shown in Fig. 1b. The smaller cluster at the top is in Area 13
(orbito-frontal lobe) while the larger lower cluster is in the
putamen. The corresponding analysis of between-group GM
differences also yielded several clusters (Fig. 1a), with one of
particular interest since it overlaps a functional activation cluster.
Simply excluding this functional cluster from further consideration
risks making two mistakes: (i) there still may be a significant
contribution due to actual differences in metabolism that would be
ignored; and (ii) since the GM activation cluster is drawn from a
continuous 3D map, it is possible that anatomical differences
contribute to the functional result beyond the statistically
significant GM-difference cluster, so ignoring sub-significant
anatomical differences may lead to the acceptance of false
functional activations.

The original functional activations (Fig. 1b) were included in
two different models to account for anatomical differences that

http://www.fmrib.ox.ac.uk/fsl/
http://afni.nimh.nih.gov/afni/


Fig. 1. Rhesus FDG-PET activation results. (a) Cluster showing VBM result for between-group difference in GMP. (b) Results for a standard GLM between-
group comparison of FDG metabolism. (c) Functional activation from panel b, but including gray matter probability as a voxelwise covariate (as in Eq. (2)). All
results are thresholded at p<0.005 uncorrected.
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could affect the interpretation of functional results. The first model
uses Eq. (2), and Fig. 1c demonstrates the functional activation
remaining after modeling the voxelwise GMP covariate. The
second model performs a hierarchical linear regression to calculate
ΔR2 (Eqs. (3)–(7)) and its significance via the Fchange (Eq. (8)), and
can be used to determine the fraction of the effect that is
attributable only to the functional data (image data not shown). The
resulting maps have a nearly identical spatial pattern but a
somewhat different interpretation. A summary of each cluster's
maximum voxel is shown in Table 1.

In both models, the functional activation in prefrontal cortical
Area 13 is removed and can be attributed primarily to differences
in underlying anatomy. However, the functional activation in the
putamen, which demonstrates little influence due to anatomical
differences, remains as a significant cluster.

fMRI results
Results from the fMRI data are used to illustrate three different

effects of incorporating voxelwise GMP values as covariates:

1. A functional activation remains unaffected since there is only a
small GMP effect.
Table 1
Summary of rhesus FDG-PET data for two exemplary significant clusters

Putamen Area 13

Coordinates (mm from AC) 13.8,−0.6, 6.3 12.5, 11.9, 5.0
GMP t-test −1.00 −3.06
Standard GLM t-test −4.45 −3.20
GLM with voxelwise GMP covariates −4.35 −1.93
F-change 5.89 1.26

The coordinates (x, y, z) are in mm relative to the posterior edge of the
anterior commisure (AC). The maximal value from the standard functional
analysis is indicated by “Standard GLM t-test” for each cluster. At each
cluster maximum, the corresponding VBM results (“GMP t-test”) were
extracted, as were the t-test values for the analysis using voxelwise VBM
results as a covariate as in Eq. (2) (“GLM with voxelwise GMP covariates”)
and the associated F-change as in Eq. 8 (“F-change”).
2. An increase in magnitude and size of functional effect cluster
due to better modeling of anatomically related variance.

3. A functional activation is removed (fails to remain significant)
due to colocalization with VBM activation.

These effects are listed in the order of the number of
occurrences observed in this fMRI data set, i.e. most of the
significant activation clusters were unaffected, many of the clusters
increased in size and/or magnitude, and a few of the clusters were
removed.

Fig. 2 shows three examples of affected clusters from various
locations. The t-values under the crosshairs are listed in Table 2.
GLM results are displayed with a lower threshold of t=1.9, set
slightly below the statistical threshold of 2.05 (p<0.05) to illustrate
the effect of voxelwise covariates on marginally subthreshold data.

The outstanding feature of this comparison is that most of the
activation clusters remain unchanged, indicating that the proposed
method is fairly selective. The top two rows show clusters
(designated by crosshairs) which grew larger in both magnitude
and size when voxelwise GMP covariates were included in the
model, presumably due to improved modeling of sources of
variance. In particular, the cluster emphasized in the top row was
small and just at the threshold for statistical significance with the
standard GLM analysis, but became quite significant when GMP
covariates were included in the model. The bottom row shows a
cluster which drops below the significance level when GMP
covariates were included, indicating that the original activation is
driven substantially by an underlying anatomical difference
between subject groups rather than solely by a true metabolic
difference.

Discussion

Activation clusters are drawn from a continuous 3D map of
t-values, but they are typically examined only when they reach an
acceptable level of statistical significance. Thus, although a
functional activation can appear free of anatomical contamination
when examining thresholded VBM maps, there may still be a
major component attributable to sub-significant anatomical



Fig. 2. Human fMRI activation results at three locations. Left column: t-statistic map for GMP differences between groups showing a two-tailed t-test. Negative
t-values are shown in blue, positive values in red. Center column: Standard GLM analysis. Right column: GLM analysis with voxelwise Gray Matter Probability
(GMP) covariates included in the model. Color scale is the same for both functional SPMs (center and right columns), which have a lower threshold of t=1.9, set
slightly below the statistical threshold of t=2.05 (p<0.05). Top row and middle row: the functional cluster designated by the crosshairs increased in both size and
magnitude with GMP voxelwise covariates. Bottom row: the cluster designated by the crosshairs drops below the significance level when GMP voxelwise
covariates are included in the model. Note how in all three rows, most of the clusters are unchanged. See text for description of data and analysis.
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differences. It is crucial to account for this contribution throughout
the entire brain volume, and not just on a case-by-case basis for
only the significant functional and VBM clusters. Furthermore, the
Table 2
Summary of human fMRI data for three exemplary clusters

Figs. 2a–c Figs. 2d–f Figs. 2g–i

Coordinates (mm from AC) 42,−32, 10 −26,−26, 62 −22, 2,−18
GMP t-test 2.21 −1.32 −1.23
Standard GLM t-test 1.93 2.21 2.40
GLM with voxelwise

GMP covariates
4.07 3.91 1.87

F-change 16.54 15.25 3.52

The t-values were obtained from the pixels at the center of the crosshairs in
each of the images from Fig. 2. Labeling in first column follows same
scheme as in Table 1. Statistical significance (p<0.05) is achieved for
t=2.05.
voxelwise variation of tissue class can be expected to account for
an important proportion of variance, so including it as a covariate
in the model can lead to an increase in functional t-statistic values
in multiple regions.

There are two major limitations to this approach: (i) the
sensitivity of VBM to non-normality in the error term of the model,
and (ii) the accuracy and intersubject consistency of the
segmentation. Neither of these limitations are specific to this
approach, but rather are derived from well-known limitations in the
constituent methodologies. The VBM method can be sensitive to
non-normality in the error term due to e.g. an unbalanced design or
minimal spatial smoothing (Salmond et al., 2002), leading to an
increase in false-positive results. When VBM is integrated into the
analysis of functional data, any false positives will reduce the
significance of cospatial functional results. In both data sets
(humans and rhesus), the segmentation algorithm had difficulty in
consistently assigning deep GM structures (striatum, amygdala) to
the GM segment, so the GMP covariates had little effect on these



507T.R. Oakes et al. / NeuroImage 34 (2007) 500–508
regions. Poor image quality (e.g. poor GM/WM contrast, large
inhomogeneity artifacts) can adversely affect segmentation. It is
important to inspect the individual and group segment maps, since
regions that are inaccurately or inconsistently segmented will not
receive the appropriate correction. Poor segmentation examples
might require focused attempts with automated or manual
segmentation tools, or for extreme cases, exclusion from analysis.
As image acquisition methods and segmentation algorithms
improve, the quality of the segmentation will become less of an
issue in the implementation of this technique. In the two data sets
presented here, incorrectly segmented regions seem to have little
effect on the original GLM activation estimates; the hoped-for
correction based on GMP does not occur, but in these regions the
estimate is at least no worse than if the correction had not been
attempted.

VBM results can be fairly sensitive to the size of the smoothing
kernel used to smooth the tissue segment images. The criterion
used in this work was to match the smoothness of the GMP data to
that of the corresponding functional data. Note that “smoothness”
is not necessarily the same as “voxel size”, but rather refers to the
spatial extent and magnitude of autocorrelation across the image.
GMP data which are undersmoothed, due e.g. to poor signal:noise
ratio and/or small voxel size, can add undesirable noise to
subsequent processing steps. If the GMP data are much smoother
than the functional data, a partial volume effect will result, most
likely resulting in reduced sensitivity of the GMP correction. By
matching the smoothness of the two modalities, the noise
properties become similar and also the partial volume effect is
minimized, yielding more consistent results across subjects.

The usual assumption is that anatomical differences are always
more important than functional differences, i.e. any functional
difference in a region of anatomical difference is suspect. However,
one could also create an R2-term for the effect of function alone
and estimate the residual or sole effect of function and subtract this
from the dual effect of function and anatomy to find out the unique
contribution of anatomy. The Fchange metric (Eq. (8)) can be used to
examine the effect of including voxelwise covariates and whether
the full model is needed (e.g. Clogg et al., 1992), or an
optimization technique such as a “backward” or “stepdown”
approach (Neter et al., 1996; Rao and Toutenburg, 1999) could be
employed to determine the benefit of including voxelwise
covariates. However, an unresolved issue is how this information
should be used. Reducing the voxelwise Fchange metric to a single
global descriptor might lead to neglecting local regions in need of
correction, while on the other hand an unbiased approach would be
needed to apply the method to only a subset of activation clusters.

Intriguingly, the use of voxelwise GMP covariates is a specific
instance of a technique which can be generalized to compare any
multimodal image data. For instance, functional data such as fMRI
and PET could be combined to determine where overlapping as
well as unique activations are found in each modality. Another
application would be to use MRI perfusion to see how baseline
metabolism is associated with subsequent fMRI activation results,
a question that might be of paramount importance in clinical
studies of groups expected to show underlying baseline differ-
ences. Recent work by Casanova et al. (2006) facilitates the
interchange of anatomical and functional image data between the
primary and secondary data source using voxelwise covariates,
encouraging the inspection of data from several viewpoints.
Furthermore, the approach is not limited to using a single
covariate. By combining multiple voxelwise covariates, seemingly
disparate data sources can be integrated into a single comprehen-
sive analysis. For instance, EEG, fMRI, and PET have quite
different temporal scales and neurological interpretations; most
previous multimodal analyses have been limited to colocalization
of significant effects, but by casting these data as voxelwise
covariates the unique aspects of each data set could be more fully
explored. The data presented here represent two specific
implementations of a method that can easily be generalized to
include a broad spectrum of data.

Conclusion

Type I error, incorrectly rejecting the null hypothesis, can result
when an apparent functional activation is actually due to an
underlying difference in tissue type. Type II error, failing to reject
a false null hypothesis, can result if there are unmodeled sources
of variance in the data. The proposed method of including
voxelwise tissue information as a covariate in a GLM analysis of
functional data can reduce both Type I and Type II error rates.
The major limitation on the accuracy of this method is the validity
of the covariates, in this case the GMP maps, requiring critical
evaluation of the gray matter segmentation step. Nevertheless,
given the ease and popularity of performing VBM analysis, the
inclusion of gray matter probability maps as a voxelwise covariate
in functional data analysis should become a routine aid for data
interpretation.
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