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Diffusion tensor imaging (DTI) is a powerful and noninvasive imaging method for characterizing tissue
microstructure and white matter organization in the brain. While it has been applied extensively in research
studies of the human brain, DTI studies of non-human primates have been performed only recently. The
growing application of DTI in rhesus monkey studies would significantly benefit from a standardized
framework to compare findings across different studies. A very common strategy for image analysis is to
spatially normalize (co-register) the individual scans to a representative template space. This paper presents
the development of a DTI brain template, UWRMAC-DTI271, for adolescent RhesusMacaque (Macacamulatta)
monkeys. The template was generated from 271 rhesus monkeys, collected as part of a unique brain imaging
genetics study. It is the largest number of animals ever used to generate a computational brain template,
which enables the generation of a template that has high image quality and accounts for variability in the
species. The quality of the template is further ensured with the use of DTI-TK, a well-tested and high-
performance DTI spatial normalization method in human studies. We demonstrated its efficacy in monkey
studies for the first time by comparing it to other commonly used scalar-methods for DTI normalization. It is
anticipated that this template will play an important role in facilitating cross-site voxelwise DTI analyses in
Rhesus Macaques. Such analyses are crucial in investigating the role of white matter structure in brain
function, development, and other psychopathological disorders for which there are well-validated non-
human primate models.
l rights reserved.
© 2011 Elsevier Inc. All rights reserved.
Introduction

The Rhesus Macaque (Macaca mulatta) is one of the most widely
studied non-human primate species. This species has strong similar-
ities to humans in terms of physiology and anatomy. It is the second
non-human primate species to have its full genome sequenced (Gibbs
et al., 2007), making it attractive for genetic studies. The rhesus has
been widely used to study neuroanatomy, neurobiology, neurological
and psychiatric illnesses, behavior and social interactions. In partic-
ular, the well-developed prefrontal cortex of the rhesus monkey
makes it a unique model to study the brain systems implicated in
psychopathology (Kalin and Shelton, 2003; Nelson and Winslow,
2009). Moreover, humans and rhesus monkeys share a prolonged
period of brain development during childhood and adolescence,
which is a critical period for the study of developmental psychopa-
thology. For these reasons, the rhesusmonkey is an ideal candidate for
studies of brain and behavior relationships across development.
Accordingly, noninvasive measurements of the rhesus monkey brain
using magnetic resonance imaging (MRI) have been used for nearly
25 years (Chiro et al., 1985). Monkey brain atlases based upon post-
mortem histological slices have been developed andmade available to
the research community (Martin and Bowden, 1996; Paxinos et al.,
2009). Only recently has a computational rhesus brain template based
upon T1-weighted structural MRI scans been described and made
available (McLaren et al., 2009). However, T1-weighted templates
alone do not provide accurate localization of white matter regions.

Diffusion tensor imaging (DTI) (Basser et al., 1994) is an exquisitely
sensitive method to non-invasively map and characterize the
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microstructural properties andmacroscopic organization of brainwhite
matter (WM) tissues (Jones et al., 1999; Mori et al., 2002). Measure-
ments of water diffusion are highly sensitive to and modulated by
changes in brain tissuemicrostructural elements suchasmyelin, cellular
density, cellular membranes, the cytoskeleton and mitochondria. In
WM, which consists of packed axon fibers, the diffusion of water is
anisotropic i.e. directionally dependent because themovement of water
molecules perpendicular to the axon fibers ismore hindered than in the
parallel direction. The diffusion tensor is a positive-definite, rank-2
tensor matrix that describes the covariance of water diffusion in the
three orthogonal Cartesian directions. From the diffusion tensor one can
obtain maps of the diffusion tensor trace, eigenvalues, anisotropy and
orientation (Basser and Pierpaoli, 1996). The fractional anisotropy (FA),
the most commonly used measure of diffusion anisotropy, is a
normalized standard deviation of the eigenvalues that ranges between
0 and 1. The higher the value the more organized (in a primary
direction) theWM in that voxel. The trace of the diffusion tensor (TR) is
the sum of the three eigenvalues and indicates the total amount of
diffusivity in that voxel. It is inversely related to the microstructural
density. The axial diffusivity (also known as longitudinal or parallel
diffusivity) is the first eigenvalue of the tensor. This measure indicates
theamountof diffusion in theprimarydirectionof theWMorganization.
The radial diffusivity (also known as the transverse or perpendicular
diffusivity) is the mean of the second and third eigenvalues. The
diffusivities are indicative of the restrictedness of the tissue. These DTI
measures have been used to characterize differences in brain micro-
structure for a broad spectrumof disease processes (e.g., demyelination,
edema, inflammation, neoplasia), injury, disorders, brain development
and aging, and response to therapy (see Alexander et al., 2007 for a
review). The directional diffusion information has been used to estimate
and reconstruct the trajectories ofWMfiber bundles using tractography
(Conturo et al., 1999; Hofer et al., 2008; Mori et al., 1999).

The application of DTI in rhesus monkey research is rapidly
growing. DTI has been used in rhesus populations to study brain
changes associated with aging (Bendlin et al., 2010; Makris et al.,
2007), lesions (Shamy et al., 2010) and neuro-degeneration (Guo et
al., 2011). Tractography methods have also been used to reconstruct
estimates of white matter pathways (Hofer et al., 2008; Liu et al.,
2009; Schmahmann et al., 2007). While several of these DTI studies in
monkeys used voxel-based methods (Bendlin et al., 2010; Makris et
al., 2007), to our best knowledge, DTI templates for rhesus monkeys
are not publicly available. The creation of a standard space DTI
template would facilitate the comparison and integration of research
studies (Salimi-Khorshidia et al., 2009). To date, most published DTI
studies in monkeys with voxel-based analysis have used intensity-
based normalization with low to moderate dimensional registration
methods (Bendlin et al., 2010; Guo et al., 2011; Makris et al., 2007;
Shamy et al., 2010; Willette et al., 2010).

Voxel-based DTI studies in monkeys would benefit from the
development of standardized DTI templates similar to human DTI
templates (Mori et al., 2008; Zhang et al., 2011). A standardized DTI
template may allow for use of tensor-based spatial normalization of the
study subjects, which can improve the detection of WM differences in
studying WM related pathology (Van Hecke et al., 2011; Wang et al.,
2011; Zhang et al., 2007b). Tensor-based spatial normalization benefits
from the rich information and heterogeneity of the DTI measurements
with anatomy; however, the process of registering full tensor images is
technically more complex than with scalar images. Full tensor spatial
normalization requires reorientation of the diffusion tensor with the
local deformation, while preserving the tensor shapes (Alexander et al.,
2001). It has also been shown in human studies that the full diffusion
tensor yields the most consistent spatial normalization across subjects
(Park et al., 2003).

The purpose of this work was to develop, evaluate and optimize an
approach for generating a population-averaged DTI brain template in
nonhuman primates. These techniques were used to construct a high
quality DTI brain template from 271 young Rhesus Macaques. We also
present experimental evidence for using a high-dimensional, tensor-
based, image registration technique in the population specific DTI
template generation for non-human primates. Such a template can
represent an unbiased mean of the large sample to describe the
average structural shape, organization and diffusion properties of
white matter in young rhesus population (Joshi et al., 2004; Zhang et
al., 2007a). The DTI brain template may be used to facilitate whole
brain (Smith et al., 2006) and tract-specific analyses (Yushkevich et
al., 2008; Zhang et al., 2010). The development of a representative DTI
template is also important for the generation of a detailed brain atlas.
The template and tractography based reconstructions of five repre-
sentative WM pathways are made publicly available at http://www.
nitrc.org/projects/rmdtitemplate/.

The remainder of the paper is organized as follows: In the Material
and methods section we describe the image acquisition, pre-
processing, and framework for DTI template construction using DTI-
TK. Evaluation measures for comparison of normalization strategies
are also described to demonstrate the efficacy of DTI-TK for non-
human primates. The Results section describes results of the
comparison of normalization strategies and the details of the final
DTI template. In the Discussion section the potential applications and
limitations of our template are discussed.

Material and methods

Subjects, data acquisition and image pre-processing

The data were acquired as part of a unique brain imaging genetics
study of youngnonhumanprimates. 271 youngRhesusMacaques in the
age-range of 0.7370 to 4.2027 years with mean age of 2.4011±
0.8795 years were scanned. All studies were performed using protocols
approved by the University of Wisconsin Institutional Animal Care and
Use Committee (IACUC). Before undergoing MRI acquisition, the
monkeys were anesthetized with an intramuscular injection of
ketamine (15 mg/kg). MRI scanning was performed using a GE SIGNA
3 T scanner with a 16 cm diameter quadrature birdcage coil and the
head was fixed in the sphinx position using a custom stereotaxic frame
that fit inside the coil. DTI scanning was performed using a two-
dimensional, echo-planar, diffusion-weighted, spin-echo sequencewith
the following parameters: repetition time=10 s; echo time=77.2 ms;
field of view=14 cm;matrix=128×128 (interpolated to 256×256 on
the scanner); 2.5 mm thick contiguous slices; echo-planar echo
spacing=800 μs. Diffusion-weighted imaging (b=1000 s/mm2) was
performed in 12 non-collinear directions with one non-diffusion
weighted image and the acquisition was repeated six times and
averaged. Images were acquired in the coronal plane through the entire
monkey brain. A co-planar fieldmapwas also obtained using a gradient
echo with images at two echo times: TE1=7ms, TE2=10 ms.

The DWI volumeswere eddy-current corrected using FSL (Smith et
al., 2004). Echo-planar distortions were corrected using a field
mapping procedure (Jezzard and Clare, 1999), which was based
upon the fugue and prelude functions in FSL before performing a non-
linear tensor estimation (Alexander and Barker, 2005). The brain
tissue was carefully extracted for each subject using a rigorous semi-
automatic protocol. We first evaluated two popular brain extraction
methods (AFNI's 3DSkullStrip, FSL's BET) on a randomly selected
subset of 40 volumes (Smith, 2002; Smith et al., 2004). 3DSkullStrip
performed better according to dice similarity coefficient (Bartosic et
al., 2010) and hence it was used for all the 271 subjects. The final
masks were then carefully checked and manually adjusted.

Template construction

A primary challenge in generating a population specific template is
spatial normalization, which involves registering (aligning) each
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individual subject's image to the others. Spatial normalization of
groups of DTI data acquired from different subjects enables accurate
mapping of characteristics of the diffusion tensor, such as the
diffusivities, anisotropy and orientation within these images.

In this study, the template is constructed using DTI-TK, an
advanced DTI spatial normalization and atlas construction tool
(http://www.nitrc.org/projects/dtitk). It constructs a template in an
unbiased way that captures both the average diffusion features (e.g.
diffusivities and FA) and anatomical shape features (tract size) in the
population (Zhang et al., 2007a). It performs white matter alignment
using a non-parametric, highly deformable, diffeomorphic (topology
preserving) registration method (Zhang et al., 2007b) that incremen-
tally estimates its displacement field using a tensor-based registration
formulation (Zhang et al., 2006). The tensor-based formulation
perform alignment of white matter by taking advantage of similarity
measures comparing whole tensors via explicit optimization of tensor
reorientation (Alexander and Gee, 2000a,b; Alexander et al., 2001). By
computing image similarity on the basis of full tensor images rather
than scalar features, the algorithm incorporates local fiber orienta-
tions as features to drive the alignment of individual WM tracts. Using
full-tensor information as a similarity metric for non-linear warping
has been shown to be effective in spatially normalizing tract
morphology and tensor orientation (Park et al., 2003; Zhang et al.,
2007b).

These combined steps are used to generate a representative rhesus
monkey DTI brain template, which can facilitate accurate comparisons
of white matter microstructure and brain connectivity across
populations. The initial average template is computed as a Log-
Euclideanmean of the input DT images (Arsigny et al., 2006). The Log-
Euclidean tensor averaging preserves white matter orientation with
minimal blurring. The average DTI template is then iteratively
optimized by registering the subject images to the current average,
and computing a refined average as the mean of the normalized
images for the next iteration. This procedure is repeated until the
average image converges. The resulting template is unbiased towards
any single subject and captures the average diffusion properties of the
population at each voxel with a diffusion tensor. Subsequently, the
Fig. 1. The pipeline for generating the template: after the data are acquired, the DWI images
is extracted from the images so further processing is done only on the relevant regions of the
is then computed using the Log-Euclidean mean approach. Finally, the bootstrap template i
lastly by diffeomorphic registration.
template is “shape-corrected” to ensure that it also represents the
average shape of the population (Guimond et al., 2000). This is
achieved by first computing an average of the deformation fields that
warp each subject into alignment with the template, thenwarping the
template with the inverse of the average deformation field. The
overall schematic of the processing pipeline is shown in Fig. 1. Since
the brain size of NHP is significantly smaller than that of humans, the
scaling parameters in the optimization were adjusted to match the
size of the macaque brain. The length scale for humans in computing
the piecewise affine deformation field is 1.0 mm while that for
monkeys is 0.4 mm. Our DTI template, UWRMAC-DTI271, was
generated using the set of DTI data from n=271 monkeys.

Efficacy of DTI-TK for non-human primates

The quality of a template is dependent on the anatomical
consistency of the normalized images used to generate the template
which in turn depends on efficacy of the registration method used.
DTI-TK has previously generated very high quality DTI templates in
human studies, both for adults (Zhang et al., 2007b, 2011) and infants
(Wang et al., 2011). But its efficacywas not examined in the context of
NHP. Hence we demonstrate the effectiveness of DTI-TK, a high-
dimensional tensor-based normalization method in comparison to
three other commonly used intensity-based normalization strategies
for monkey data. We believe such comparisons for non-human
primate data can serve a valuable purpose for DTI studies in monkeys.
The three other approaches use FA, co-registered FA and T1-weighted
images, and co-registered b=0 (T2-weighted) and T1-weighted
images from the DTI study. We will refer to as (1) FA-ANTS, (2) FA-T1
and (3) B0-T1, respectively. All the three intensity-based registration
methods use a publicly available state-of-the-art intensity-based
normalization software suite called Advanced Normalization Tools
(ANTS) (Avants and Gee, 2004; Avants et al., 2006, 2008), which uses
diffeomorphic transformations similar to DTI-TK. For both DTI-TK and
ANTS we use the default setup of parameters for the diffeomorphic
transformations recommended in the online documentation. For ANTS
we use the recommended symmetric diffeomorphic mapping (SyN).
are corrected for eddy current distortions and field in-homogeneities. Then, brain tissue
images. Tensors are estimated by non-linear optimization. An initial bootstrap template
s iteratively improved using three layers: rigid registration, then affine registration and

http://www.nitrc.org/projects/dtitk


Fig. 2. Qualitative comparisons of the mean FA templates for each of the four spatial
normalization strategies applied to DTI from 30 monkeys (DTI30). Spatial normaliza-
tion using T1-weighted images co-registered to FA and B0 (FA-T1 and BO-T1,
respectively) generated considerably more blurry FA templates. The full-tensor (DTI-
TK) and FA-ANTS yielded similar and sharper FA templates; however, some of the WM
structures are better delineated on the DTI-TK map, such as the separation between the
internal and external capsule as indicated by the red arrow. The color bar indicates the
FA intensity scale (unitless).
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FA-ANTS refers to FA-based normalization using ANTS. In this
method the individual FA maps are first aligned to the FA of the
template (obtained from DTI-TK). ANTS has been demonstrated to be
among the most accurate intensity-based normalization method
among fourteen different methods (Klein et al., 2009). The estimated
transformations are then applied to the individual DTI data. Finally,
tensors are reoriented to obtain the tensors in the template space.

FA-T1 and B0-T1 are both T1-based normalization approaches but
use different intra-subject registration techniques to map the diffusion
data onto T1 space (i.e. FA to T1, B0 to T1). First, the individual FA or B0
maps are aligned to their corresponding T1-weighted images using
affine registration. The T1-weighted images are then aligned to a
population specific T1 template (Oler et al., 2010) again using ANTS.
These transformations are then applied to the individual DTI data by
reorienting the tensors as in FA-ANTS.

Although the tensors were reoriented in all the above approaches
using an identical state-of-the-art preservation of principle directions
(PPD) scheme (Alexander et al., 2001), the key difference between
those approaches and DTI-TK is that the tensor reorientation also
plays an integral part in estimating the transformations in DTI-TK
(Zhang et al., 2006), using a computationally efficient “finite-strain”
strategy (Alexander et al., 2001).

Evaluation metrics
The efficacy of a DTI registration method may be measured by the

accuracy of the WM alignment. The four registration methods were
compared using several metrics (Zhang et al., 2007b, 2011) that
are described below. The brain alignment performance was first
evaluated using a subset of n=30monkeys (called DTI30) for higher
computational efficiency relative to the full sample. The following
metrics are used to investigate the spatial variance and consistency of
the scalar, directional and entire matrix information in the diffusion
tensor.

Normalized standard deviation and dyadic coherence. The diffusion
anisotropy and the dominant direction of diffusion are two features that
account for much of the variations in WM structures (Pierpaoli et al.,
1996).Misalignment ofWMstructures yields large voxelwise variations
in either one or both of these features. Therefore, the normalized
standard deviation of the FA and the dyadic coherence (Jones et al.,
2002) were selected as voxelwise statistics to gauge the normalization
quality. The normalized standard deviation of FA, σ FA, is defined as the
ratio of the standard deviation over the mean of the FA values. The
Dyadic coherence, κ, which ranges from 0 to 1 (0 for randomly oriented
directions and 1 for identically oriented directions), captures the
variability in the dominant direction of diffusion. We calculated σ FA

and κ at each voxelwithin theWMregions of theDTI30 templates for all
the four methods. We also computed normalized standard deviation of
the tensor trace (TR), similar to σ FA.

Cross correlations of diffusion measures. Cross correlation between two
scalar maps X1 and X2 is computed as

CCx =
∑vX1 vð ÞX2 vð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑vX1 vð ÞX1 vð Þ∑vX2 vð ÞX2 vð Þ
p

where υ indexes over all the voxels. This value ranges between 0 and
1. The higher the cross correlation, the higher the similarity between
two maps. We computed the cross correlations of the WM voxels
between the DTI30 subjects and the corresponding template for each
of the four normalization methods using both fractional anisotropy
(FA) and trace (TR) of the tensors.

Overlap of eigenvalue–eigenvector pairs (OVL). Eigenvalues and
eigenvectors contain complementary information, which together
specify the size, shape, and orientation of the diffusion tensor ellipsoid
that characterizes diffusion (Basser and Pajevic, 2000). The OVL
between two tensors is computed as:

OVL =
∑3

i=1λiλ′i εiε′ið Þ2
∑3

i = 1λiλ′i

where λ,ε and λ′,ε′ are the eigenvalue–eigenvector pairs of the two
tensors respectively. A higher average OVL indicates that the method
generates more consistently normalized subjects. The OVL of the WM
voxels between DTI30 subjects and the corresponding templates for
each of the four normalization methods was computed.

Distances between diffusion tensors. The twodistancesbetweendiffusion
tensors (Zhang et al., 2006) are (a) theEuclideandistance (ED)definedas:

ED = ∥D1−D2∥C =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TR D1−D2ð Þ2� �q

image of Fig.�2


Fig. 3. Comparisons of the overall performance of the four spatial normalization methods in terms of the empirical CDF of both normalized standard deviation of FA, σ FA (left), and
the dyadic coherence, κ (right), computed for the voxels within the WM. The corresponding histograms are shown as insets in each plot. In both cases, the CDFs and histograms for
DTI-TK demonstrated greatest intersubject consistency. The σFA shows similarity of the performance (left shift) of FA-ANTS and DTI-TK while dyadic coherence shows the better
performance (right shift) of DTI-TK in preserving white matter orientations. The improvement in performance is statistically significant (pb1e-10) as per the two sample KS tests.

Fig. 4. Qualitative comparisons of the normalized standard deviation of FA (left) and TR (right) maps in the white matter for each of the normalization methods. Both lower σ FA and
lower σ TR are desirable and clearly better for both DTI-TK and FA-ANTS relative to the other approaches.
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Fig. 5. Qualitative comparisons of the dyadic coherence, κ, maps for the whole brain for
each of the normalization methods. Highest κwas observed for DTI-TK, followed by FA-
ANTS, which suggests that the tensor-based normalization best preserves the
orientation information.
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and (b) the deviatoric distance (DD) which is the Euclidean distance
between the corresponding deviatoric tensors that takes into account
the anisotropic component of the tensors defined as:

DD = ∥D1−D2∥D =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π
15

∥D1−D2∥2C−
1
3
TR2 D1−D2ð Þ

� �s
:

Lower tensor distances suggest better accuracy in WM alignment.
We computed the above two distances between WM voxels of the
DTI30 subjects and the corresponding templates of the four
normalization methods.

Statistical comparisons. Statistical comparisons of the four methods
were performed with the same white matter mask for all the
registration methods. DTI-TK and FA-ANTS already share a same
white matter mask. The template FAs of FA-T1, B0-T1 are mapped on
to the DTI-TK space, using FSL's linear image registration tool (FLIRT)
(Smith et al., 2004). This removes the size of the white matter mask as
a confounding factor in the performance comparison. The set of white
matter voxels was defined as those having FA≥0.2. Histograms
(distributions) for all four normalization methods were then
generated for each metric. Many of these histograms are skewed
and thus violate normality. So paired t-tests would be inappropriate.
Hence the distributions were evaluated using the respective empirical
cumulative distribution functions (CDF). A CDF is the probability that
a variable has a value equal to or higher than a specific value. For each
metric we perform Kolmogorov–Smirnov (KS) two-sample tests
(Massey, 1951) to estimate statistical significance of the differences
between the CDFs. The KS statistic measures the largest possible
distance between two CDFs.

Results

Evaluation results

Qualitative comparisons of the FA of the templates using DTI30 for
all of the spatial normalization methods are presented in Fig. 2.
Visually, it is evident that the full-tensor based (DTI-TK) and FA based
(FA-ANTS) templates are the sharpest, while the FA-T1 and B0-T1
templates are much more blurry. Compared to FA-ANTS, some of the
finer WM structural details, such as the separation between the
internal and external capsules, are better delineated using DTI-TK (see
arrows in Fig. 2). In all the quantitative evaluation figures DTI-TK is
represented using blue, FA-ANTS using red, FA-T1 using green and B0-
T1 using cyan colors.

Normalized standard deviation and dyadic coherence maps
Good spatial normalization will ideally maximize the anatomical

consistency in the imaging measures, which decreases measurement
variance, while preserving individual differences. The empirical CDFs
and histograms (insets) of the above variables for all four methods are
shown in Fig. 3. DTI-TK has the smallest standard deviation in FA and
the highest eigenvector coherence. According to these criteria, B0-T1
and FA-T1 perform poorly, as indicated by the right shift in σ FA and
left shift in κ, compared to DTI-TK and FA-ANTS. Although FA-ANTS
performs similarly in terms of σFA, DTI-TK yields more consistent
tensor orientations as demonstrated by higher κ of the tensors.

The spatial maps of σFA, σTR and κ are shown in Figs. 4 and 5, which
visually demonstrate reduced σFA and σTR and increased κ for the DTI-
TK and FA-ANTS. σTR is significantly lower than that of FA. This is
expected since the contrast between white and gray matter is quite
less in TR maps. As can be seen both qualitatively and quantitatively,
DTI-TK yielded the lowest inter-subject variance in the scalar
measures and higher eigenvector coherence, which we believe is
desirable in a DTI spatial normalization method.

Cross correlations and overlaps
The empirical CDFs and histograms (insets) of the cross-correlations

for FA, TR and eigenvalue–eigenvector overlap (OVL) for the four
methods are shown in Fig. 6. The plots DTI-TK are shifted furthest to
the right, though FA-ANTS has similar performance. These results
suggest that DTI-TK yields more consistent tensor information at the
voxel level.

Tensor distances
The histograms and CDFs of the tensor distance metrics (ED and

DD) are shown in Fig. 7. The plots of DTI-TK are significantly shifted to
the left. These results support that DTI-TK yields higher between-
subject consistency of the full diffusion tensors.

Features of the UWRMAC-DTI271

In this section example maps of different measures extracted from
UWRMAC-DTI271, the template generated from all 271 animals using
DTI-TK, are presented. Maps of the average fractional anisotropy,
trace, axial diffusivity and radial diffusivity of are shown in Fig. 8. Axial
slices (every 5th slice) of our DTI template are shown in Fig. 9 as RGB-
encoded fiber orientation maps (Pajevic and Pierpaoli, 1999). The
intensities of the colors are modulated by the corresponding FA map.
The bottom row of Fig. 9 shows a subset of slices (corresponding to
second row) from a registered T1 template (McLaren et al., 2009). The
UWRMAC-DTI271 was aligned to the Saleem Logothetis (SL)

image of Fig.�5


Fig. 6. From left to right, empirical CDFs and histograms (insets) of cross correlations with respect to number of subjects: cross correlation ofWM FA, cross correlation ofWMTR and eigenvalue–eigenvector pair overlap with the template. DTI-
TK performs better (indicated by right shift in the plots) with statistical significance of pb1e-09 according to KS tests.
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Fig. 7. Empirical CDFs of tensor distances with respect toWM voxels. Left: Euclidean distance (ED) of the tensors to the template. Right: Deviatoric distance (DD) of the tensors to the
template. The corresponding histograms are shown in inset plots. DTI-TK has lowest distances indicated by the left-shift of the curves. Euclidean distances (ED) are shown on the left
and deviatoric distances (DD) are shown on the right for all the four registration methods. DTI-TK shows better performance as can be seen from the left shift. The two sample KS
tests reveal that the shifts are statistically significant with pb1e-10.
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(McLaren et al., 2009) and Paxinos (Paxinos et al., 2009) space by
affine registration (as used in the FA-T1) of our template FA to the
corresponding T1 weighted templates. This registration approach
(FA-T1), as can be seen, from the evaluation experiments was the next
Fig. 8. Population averaged, 3D fractional anisotropy (FA), trace, axial diffusivity and
radial diffusivity maps of corresponding slices in sagittal (slice 125: position−1.0 mm),
coronal (slice 106: position 11.5 mm) and axial (slice 156: position 20.0 mm) planes of
the UWRMAC-DTI271 in Saleem and Logothetis (McLaren et al., 2009) atlas space. Each
of these represents different average properties of the diffusion tensor and is useful in
voxelwise analyses to localize individual differences. The units for trace, axial diffusivity
and radial diffusivity are mm2/s and indicate the rate of water diffusion, while the FA
ranges between 0 and 1 and is unitless.
best performing method, in the absence of diffusion tensor data. The
tensors in the corresponding T1 spaces were resampled and
reoriented using the Log-Euclidean and PPD framework respectively
using the implementations in DTI-TK.

Tractography on the DTI template can be used to estimate the
trajectories of white matter pathways (Jones et al., 2002; Park et al.,
2003) in the macaque brain. To demonstrate the potential of
tractography applications, the UWRMAC-DTI271 was used to
reconstruct fivemajorwhitematter pathways— the corpus callosum,
the inferior fronto-occipital fasciculus, the cingulum bundles, the
fornix and the uncinate fasciculus. Tracts were generated and
selected based on strategies described by Catani and Thiebaut de
Schotten (2008) and Mori et al. (2002). These major WM pathways
share similar topology with those in humans. Several additional 3D
renderings of these tracts are available online as supplementary
material.

Finally Fig. 11 shows corresponding axial slices of FA maps of six
different subjects and the corresponding slices from the template. It
can be seen that the major white matter structures are consistently
aligned. Additional movies showing the accurate alignment for an
axial and a coronal slice are available as supplementary material. Such
consistent alignment is highly desirable for voxel-based analyses.

Discussion

In this paper we described the construction of a population-specific
DTI template, the UWRMAC-DTI271, for young Rhesus Macaques. The
DTI templatewas resampled and aligned using affine registration of our
template FA to the corresponding T1 weighted templates in both the
Paxinos atlas (Paxinos et al., 2009), (241×320×190, 0.25×0.25×
0.25 mm3) and the Saleem and Logothetis atlas (McLaren et al., 2009)
(256×256×240, 0.5×0.5×0.5 mm3) and is currently available as a
free, image-based resource in the standard image NIFTI (.nii) format for
researchers worldwide. We believe that it will be of significant interest
to investigators in the fields of brain imaging, systems neuroscience,
developmental neurobiology, comparative neurobiology, primatology
and psychiatry. This template, along with the WM pathways, may be
downloaded at http://www.nitrc.org/projects/rmdtitemplate/. It may
be loaded and viewed with many publicly available image analyses
software packages such as FSL (http://www.fmrib.ox.ac.uk/fsl/), ITK-
SNAP (http://www.itksnap.org/pmwiki/pmwiki.php) and AFNI (http://

http://www.nitrc.org/projects/rmdtitemplate/
http://www.fmrib.ox.ac.uk/fsl/
http://www.itksnap.org/pmwiki/pmwiki.php
http://afni.nimh.nih.gov/afni
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Fig. 9. Axial slices (every 5th slice from slice 123 through 183) of eigenvector color maps from UWRMAC-DTI271 in Saleem and Logothetis atlas space (McLaren et al., 2009). The last
row shows corresponding (to the second row: slices from 143 through 163) axial slices of a T1-weighted template (McLaren et al., 2009). The top left frame shows the color mapping
of the WM orientation: medial/lateral (right/left) is mapped to red, inferior/superior to blue and anterior/posterior (right/left) to green. The scale of the image is shown on bottom
left. The positions of the slices relative to the origin in mm are shown on the bottom right of each slice.

Fig. 10. White matter tracts reconstructed on the UWRMAC-DTI271 template by adapting strategies described in Catani and Thiebaut de Schotten (2008) and Mori et al. (2002) for
human white matter tracts. The tracts were obtained using the tensor deflection (TEND) tractography algorithm (Lazar et al., 2003) with a step size of 0.025 mm, stopping criteria of
FAb0.1–0.15 and a curvature threshold N45°–60°. The tracts are overlaid on the slices of the Paxinos T1 atlas (Paxinos et al., 2009). Several additional 3D renderings of the tracts are
available online as supplementary material.
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Fig. 11. Five corresponding slices (every second one from slice 28 through 36) for six different subjects (one subject per row) and the corresponding slices in the template (bottom
most row). The normalized images show high anatomical consistency across subjects.
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afni.nimh.nih.gov/afni). The WM tracts may be loaded and viewed in
TrackVis (http://www.trackvis.org/). The contributing factors to the
high image quality of our template are (1) the extremely large sample
from which the template was created and (2) the high performance of
the spatial normalization across animals.

Consistent with recent DTI template creation studies in humans
(Wang et al., 2011; Zhang et al., 2007b, 2011), this study showed that
DTI-TK generated a DTI template of the Rhesus Macaques with the
least inter-subject variability and high anatomical consistency.
Although evaluating all possible registration methods is beyond the
scope of the current paper, we can conclude that the tensor-based
registration with DTI-TK yielded more consistent mapping of the
scalar DTI measures, and the tensor orientation (e.g., eigenvectors, full
tensor) in particular, compared to intensity based methods. The latter
is not too surprising as previous works such as Park et al., 2003
demonstrated that under common transformation model, using full
tensor information performs better than using rotation invariant
indices of the tensor. Hence although the improvement of DTI-TKmay
be due to different implementation of the diffeomorphic trans-
formations the primary reason may be attributed to the use of tensor-
based similarity. We also note that FA-ANTS had similar performance
for registration of FA (and TR) maps, and that this approach would
likely generate similar results when evaluating just scalar DTI
measures. The apparently worse performance of the T1 normalization
approaches (FA-T1 and B0-T1) is likely caused by poor registration of
the DTI to the T1-weighted images, but might also be caused by
overall worse performance of normalization using T1-weighted
images. We believe that the presented comparisons can help
primatologists make informed decisions when choosing a registration
method and provide useful guidance in spatial normalization of
monkey DTI data.

Although UWMRAC-DTI271 is obtained from a very large number
of subjects using awell-tested normalizationmethod there are several
limitations that need to be considered. First, the spatial resolution of
the original DTI acquisitionwas not isotropic andwas relatively coarse
in the slice (anterior/posterior) dimension (2.5 mm). However, both
the template and the spatially normalized DTI data of each individual
animal (Fig. 8) appear much sharper than the original data, including
the slice dimension. Clearly the DTI template benefits from averaging
across such a large number of images, resulting in minimal apparent
blurring. Second, the field-map based distortion correction prior to
spatial normalization (see Material and methods section for details)
cannot completely compensate for highly distorted anatomical areas
in the ventral prefrontal areas and temporal lobe regions around the
inner ear. This is a limitation with nearly all DTI studies in both
monkeys and humans. In the future, an improved DTI template may
be constructed with true isotropic resolution and parallel imaging,
using the spatial normalization strategies described here. Third, the
DTI template was generated using DTI data frommonkeys over an age
range of 0.7370 to 4.2027 years, which may be suboptimal for use in
studies of animals at ages outside the range. Future work is needed to
generate either DTI templates at other ages or a DTI template with a
temporal dimension to accommodate for age-related changes (Fonov
et al., 2011; Hart et al., 2010). Finally, it is well known that the
diffusion tensor model has some limitations with regard to describing
both the diffusion and geometric properties of the tissue in regions of
fiber crossing (Wedeen et al., 2008). Despite this limitation, there is a
huge potential for DTI, and it is widely used for most clinical and
scientific imaging research studies of white matter.

We would also like to note that, although population averaged
computation templates represent anatomical variation in the species
with high SNR and low bias (Joshi et al., 2004; McLaren et al., 2009;
Zhang et al., 2007a), single-subject post-mortem templates (Martin
and Bowden, 1996; Paxinos et al., 2009) are very valuable in cases
where DTI/MRI cannot match the histological specificity and preci-
sion. Single-subject computational atlases with high SNR have also
been developed by averaging repeated acquisitions of a single subject
for accurate segmentation and atlas based analyses (Mazziotta et al.,
2001; Oishi et al., 2011). Some voxel based analyses (like TBSS),
although recommend using population-specific template, provide an
option to choose “most representative” single-subject as a template
that is then transformed to MNI152 (Smith et al., 2006). Finally,
there are more recent Bayesian and multi-atlas approaches that may
ultimately result in better representation of population properties
(Koikkalainen et al., 2011; Ma et al., 2008; Natasha et al., 2009; Wu et
al., 2011).

There are many potential avenues to apply the UWRMAC-DTI271.
First, it is an average representation of brain neuroanatomy and
diffusion measurements in the monkey, which will be valuable for
education, atlasing, anatomic localization, and comparative neuro-
anatomy (Ramnani et al., 2006; Stephan et al., 2001). Future work will
include detailed anatomic labeling of the template similar to the
human DTI atlas created by Mori et al. (2008). The UWRMAC-DTI271
template may be useful as a reference template for spatial normal-
ization of other DTI data sets, with matching age-range, for voxel-
based analyses. Depending on the age-range and anatomical status of
the sample, some monkey DTI studies may still need to use a study-
specific template. In such cases, researchers can build upon the
thorough evaluations and registration framework presented in this
paper and can subsequently map the results onto this template for
standardized reporting. By mapping regions-of-interest (ROIs) and/or
tract reconstructions onto this template, automated region- and
structure- specific analyses may be efficiently performed. Further,
since the template is in standardized spaces (McLaren et al., 2009;
Paxinos et al., 2009), it is now possible to integrate other brain
templates and regional atlases to create multimodal maps of the
monkey brain.

Another unique attribute of the UWRMAC-DTI271 template is
that the major directional components of the diffusion tensor
orientations are preserved. This facilitates the application of
tractography in the average template as can be seen by the example
reconstructions of five major white matter pathways shown in
Fig. 10. We will use this template to reconstruct more of the fiber
pathways and create a more complete tractography atlas of the
rhesus monkey brain. Importantly, identifying WM pathways may
facilitate efficient tract specific analyses (TSA) in nonhuman
primates (Yushkevich et al., 2008; Zhang et al., 2010). One clear
advantage of DTI studies in the monkey is that tract reconstructions
may be compared with tracer studies that are not possible in
humans. Spatial standardization will also enable the mapping and
comparison of prior tract tracing studies in the CoCoMac database
(Croxson et al., 2005), which describes cortical connections in the
rhesus macaque. Our template, in conjunction with a reference label
atlas (Wisco et al., 2008), can be used for developing in vivo brain
connectome models for the rhesus monkey using tractography
(Hagmann et al., 2010). This will be a critical step in understanding
the influence of connectivity of the primate brain.

In addition to its application in the study of development per se,
we believe that the developing rhesus monkey DTI brain template
presented here is an important step in furthering the study of
psychopathology. In particular, studies demonstrate that several
forms of psychopathology often begin during childhood or adoles-
cence (Paus et al., 2008). Moreover, evidence suggests that many
adolescent and adult anxiety and affective disorders are chronic
developmental illnesses that have their genesis in early childhood
(Pine et al., 1998). Thus, early childhood and adolescence are a period
of increased risk, and since anxiety disorders are among the most
common forms of psychopathology (Kessler et al., 2005), a focus on
developmental non-human primatemodels of brain white matter will
be increasingly important to understand the neural bases of anxiety-
related psychopathology (Kalin and Shelton, 2003; Nelson and
Winslow, 2009).

http://afni.nimh.nih.gov/afni
http://www.trackvis.org/
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